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Abstract: Three new tetraphenylethene (TPE) push–pull chromophores exhibiting strong intramolecular
charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition–retroelectrocyclization
(CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both
1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-
7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-
alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and
for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main
ICT bands that dominate the UV–Visible absorption spectra underwent a pronounced red-shift
beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was
shown that the ICT character shown by the compounds exclusively originated from the clicked
moieties independently of the nature of the central molecular platform. Photothermal (PT) studies
conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties,
especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with
donor-substituted are promising candidates for PT applications.

Keywords: TPE; AIEgen; cycloaddition-retroelectrocyclization; click chemistry; photothermal applications

1. Introduction

Although the phenomenon has been known and briefly described before [1], it was
Ben Zhong Tang who first described and tried to explain the unusual behavior of 1-methyl-
1,2,3,4,5-pentaphenylsilole, which was not luminescent in solution in a good solvent but
became highly emissive in the solid state [2]. This very rare behavior, called Aggregation-
Induced Emission (AIE), is opposed to the behavior classically encountered in fluorophores
with a planar and rigid structure, which are generally fluorescent in solution and non-
emissive in the solid state (Aggregation-Caused Quenching—ACQ). Following this work,
in just over 20 years, the number of publications concerning the description of new AIE
luminogens (AIEgens) has increased exponentially [3], and the the mechanisms leading to
the observation of this phenomenon are now well known [4–6]. The considerable success
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of the AIE phenomenon lies in the fact that it makes possible it to effectively address a
major issue, which is the emission in the solid or aggregated state of molecules, a problem
of the utmost importance for many scientific fields or technological applications [4,7,8].
Among the many areas taking advantage of AIEgens, we can mention optoelectronics with
OLEDs [9,10], stimuli-responsive materials [11–13], anticounterfeiting or encryption [12,14],
sensing [15–17] and biology or medicine, fields in which the use of AIEgens has enabled
spectacular advances [18–23]. Indeed, AIEs are used in the fields of imaging [24,25],
elucidation of biological processes [26–28], innovative therapies such as photodynamic
therapy (PDT) [29–31], photothermal therapy (PTT) [32,33], sonodynamic therapy enhance-
ment [34], cocktail therapy [35] and theranostics [36,37]. Due to the specificity of biological
applications, it is necessary to trigger the AIEgens with light in the near-infrared (NIR)
domain, which has the advantage on the one hand of not being harmful to the cells, and
on the other hand of having a good depth of penetration into the living tissues [38,39].
As a result, it was necessary to substantially reduce the HOMO–LUMO energy gap (Eg)
of conventional AIEgens whose absorption bands are located in the UV range. Differ-
ent strategies can be considered to increase the excitation and emission wavelengths of
the fluorophores. The first one consists of increasing the conjugation length of the π-
system. However, this strategy is rapidly discarded due to solubility issues, which require
“decorating” the molecules with flexible chains. The second one consists of introducing
electron-attracting (A) and/or donating (D) groups into the π-conjugated system [40–42].
Such groups induce changes in orbital energy levels, either an increase in HOMO energy
level (influence of donor group), or a decrease in LUMO energy level (influence of attract-
ing group) of the molecule leading to a narrowing of the Eg [43]. Among the attractor
groups yielding the best results are the dicyanovinyl groups. For instance, the latter can
be introduced via a Knoevenagel condensation reaction of malonitrile on an AIEgen func-
tionalized with a carbonyl [39,44]. Another approach consists of taking advantage of the
“click-chemistry” introduced by K. B. Sharpless, which is effective in introducing various
groups under mild, catalyst-free and atom-saving conditions [45]. More especially, the
[2 + 2] cycloaddition–retroelectrocyclizations (CA-RE) that involve the reaction between an
electron-rich alkyne and an electron-deficient alkene (Scheme 1) have recently attracted
significant attention [46,47]. The CA-RE reaction was first reported by M. I. Bruce in
1981 in the field of organometallic chemistry by reacting 1,1,2,2-tetracyanoethene (TCNE)
with metallocene-substituted acetylides [48]. It was 18 years later that it was used for
the synthesis of DA-type thiophenevinylidene derivatives for nonlinear optical (NLO)
applications in the groups of A. K.-Y. Jen and U. W. Suter [49,50]. This reaction has been
widely exploited and studied by the group of F. Diederich to develop a new platform of
simple molecules with nonlinear optical (NLO) properties [51,52]. In the continuation of
these works, he showed that it was possible to modulate the optical and electrochemical
properties of the clicked compounds by extending the CA-RE reaction to other electron-
deficient alkenes which have a similar reactivity, such as 7,7,8,8-tetracyanoquinodimethane
(TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) [53–55]. Since
then, researchers have used CA-RE to synthesize D-π-A push–pull systems to be used
in various applications such as optoelectronics [56–68], NLO [69–71], photoacoustic (PA)
imaging [72–76] and theranostics [77]. Surprisingly, although the photoacoustic and pho-
tothermal (PT) phenomena are related, very few papers describe the use of CA-RE clicked
products for PT applications [72,78].

In this work, we used the [2 + 2] CA-RE reaction with the aim of obtaining new
AIE-based PT materials displaying a strong charge transfer character. We chose the AIEgen
archetypal tetraphenylethene (TPE) as the central core due to its very good ability to
retain its AIE properties, although it is incorporated in more complicated molecular ar-
chitectures [79,80]. Moreover, when linked to naphthalene diimide-fused 2-(1,3-dithiol-2-
ylidene)acetonitrile derivatives, it has already shown its ability to lead to AIE-based PT
materials [81]. In order to achieve the CA-RE reactions, we functionalized the four arms of
the TPE with C≡C triple bonds capped by dialkylanilino moieties as electron-donor groups.
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The resulting clicked products with TCNE, TCNQ and F4-TCNQ showed a pronounced CT
characterized by an NIR strong absorption, in particular, for TPE-TCNQ and TPE-F4-TCNQ,
in the biological transparency window (NIR-I, 750–1000 nm). These two latter products
were found to possess good thermal properties, allowing them to display rather good
photothermal performances.
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Scheme 1. Mechanism of the CA-RE click reaction between TCNE (top) or TCNQ (bottom) and
alkynes activated by an electron-donor group (EDG). When TCNQ is used, the quinoidal moiety is
located next to the EDG group [54,82].

2. Results and Discussion
2.1. Synthesis

The preparation of compounds TPE-TCNE, TPE-TCNQ and TPE-F4-TCNQ
started with TPE-alkyne, whose synthesis involved a McMurry homocoupling
reaction of the benzophenone derivative Bz-alkyne with a yield of 55% (Scheme 2).
Bz-alkyne was synthesized in 71% yield by using a Sonogashira cross-coupling reac-
tion between 4,4′-dibromobenzophenone and N,N’-didodecyl-4-ethynylaniline. All at-
tempts to obtain TPE-alkyne through a Sonogashira cross-coupling reaction between
1,1,2,2-tetrakis(4-bromophenyl)ethene and N,N’-didodecyl-4-ethynylaniline invariably con-
ducted to inseparable mixtures of diversely substituted compounds.

Finally, [2 + 2] CA-RE reactions were conducted by using a 50% excess of tetracyano
derivatives (TCNE, TCNQ and F4-TCNQ) in various solvents at room temperature to form
TPE-TCNE, TPE-TCNQ and TPE-F4-TCNQ as dark film-forming solids after purification
with column chromatography on silica gel (Scheme 3).

All the compounds were fully characterized by 1H, 13C{1H}, 19F{1H} NMR spec-
troscopy and high-resolution mass spectrometry (HR-MS) (see ESI for spectral details).
Examining their 1H NMR spectra, some interesting points can be noted (Figure 1): (i) as
expected, the grafting of electron-withdrawing groups on the triple bond led to a deshield-
ing of the protons located in their vicinity (doublets in the aromatic region), as well
as those of the methylene groups bonded to the nitrogen atoms of the aniline moieties
(δ = 3.25 − 3.55 ppm); (ii) the comparison of the chemical shifts of the aromatic protons
between TPE-alkyne, TPE-TCNE and TPE-TCNQ highlighted the localization of the di-
cyanoquinomethanyl moiety on the aniline side in agreement with previous findings [54];
(iii) due to the highly twisted conformation of the butadiene in TPE-TCNQ (see ESI), all
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the protons present in the quinoid ring are not equivalents, giving rise to four doublets
among which two are clearly seen in Figure 1 (see ESI for more details) and iv) the spectrum
obtained for TPE-F4-TCNQ is poorly resolved, implying the presence of paramagnetic
species as observed elsewhere [46,53]. Indeed, the ESR spectrum of a THF solution of
TPE-F4-TCNQ showed an unresolved weak signal with a g factor of 2.0027 and a band
width of 7.50 G, whereas, in the solid state, a much more intense signal with a g factor of
2.0021 and a band width of 10.25 G was observed (Figure 2).
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2.2. Photophysical Properties

The UV–Visible absorption spectra of the investigated compounds are shown in
Figure 3. The starting compound TPE-alkyne only showed a major absorption peak at
359 nm corresponding to a π-π* transition (vide supra). Contrastingly, the spectra of
TPE-TCNE, TPE-TCNQ and TPE-F4-TCNQ showed additional intense absorption peaks
in the visible–NIR region (see Table 1 for data). These peaks possessed strong molar
extinction coefficients, likely corresponding to intramolecular charge transfer (ICT) absorp-
tions involving the terminal amino groups and dicyanovinylic moieties [76]. Moreover,
as observed previously, the effect of the increasing electron-withdrawing strength of the
adduct that is F4-TCNQ > TCNQ > TCNE is witnessed by a marked bathochromic shift
in the CT absorption [70–72,83–86]. Besides the intense charge transfer band involving the
dicyanoquinoïd moieties (CT band B) observed above 600 nm for TPE-TCNQ and TPE-F4-
TCNQ, the less intense CT band (CT band A) that was observed for all the clicked com-
pounds in the 450–550 nm region involved the dicyanovinylic moieties (see Figure 4) [76].
Finally, although this is commonly observed for compounds exhibiting a charge transfer
phenomenon, we have not demonstrated solvatochromism for these TPE adducts [66]. This
may be related to the symmetry of these molecules, which implies that they have a weak
total dipolar moment in the excited state. The absorbance spectra of all adducts deposited
as thin films on quartz slides were like those recorded in THF solutions (Figure S23). As
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seen in Table 1, the longer wavelength absorptions experienced moderate (TPE-TCNE: 7 nm
and TPE-4F-TCNQ: 15 nm) to appreciable (TPE-TCNQ: 50 nm) red shifts in the solid state.
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Table 1. Optical data (absorbance and fluorescence) for the investigated compounds recorded in
solution or in the aggregated state.

TPE-Alkyne TPE-TCNE TPE-TCNQ TPE-F4-TCNQ

Absorbance in solution a

(nm)/(ε (L.mol−1.cm−1))
294 (82,400)

359 (143,400)
307/(45,600)
469 (113,400)

337 (113,900)
468 (78,500)

688 (155,000)

348 (97,500)
497 (73,600)

849 (163,400)

Absorbance as thin films
(nm) - 476 471; 738 498; 864

λem max
(solution a/aggregated b) 582/560/- ≈700/786 - -

Φsol (%) a 13% - - -

Φaggr (%) b 21% ND - -

λonset (nm) c 460 540 900 -

Eg opt (eV) d 2.70 2.30 1.38 -
a measured in THF, b 10% THF/90% H2O, c Estimated from the extrapolation of the absorption curve of TPE-
TCNQ, d Calculated using the relation E = 1.6 × 10−19 (h.c/λonset). ND: not determined (see Characterization
Methods part).
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The fluorescence spectra were also recorded both in solution (THF) and in the aggre-
gated state for all compounds. As observed in most cases with CA-RE products [87–89],
only the TPE-alkyne precursor exhibited appreciable fluorescence with an emission max-
imum at 582 nm and a quantum yield of 13%. A faint fluorescence was detected for
TPE-TCNE with an emission maximum at ca. 700 nm and a quantum yield lower than 1%.
The corresponding spectra are shown in Figure 5. Interestingly, the emission maximum
showed a dependence on the pH of the solution with a red-shift of 44 nm in acidic medium
(see Figure S26). As observed with most TPE derivatives, the emission intensity increased
markedly when going from the solution to the aggregated state, indicating an AIE be-
havior [79]. Consequently, we decided to follow the evolution of the emission spectra of
both TPE-alkyne and TPE-TCNE in various mixtures of THF/water, water being a bad
solvent for these compounds that should induce an aggregation phenomenon at a certain
percentage. As shown in Figure 6, the emission intensity gradually increased as the water
percentage exceeded 20% for TPE-alkyne, and more abruptly above 70% for TPE-TCNE,
indicating that the presence of the dicyanovinylic moieties induced an increase in water
solubility. Interestingly, both compounds exhibited an opposite shift when passing from the
solvated to the aggregated state, with TPE-alkyne experiencing a slight blue-shift, whereas
for TPE-TCNE, a more pronounced red-shift was noticed.
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2.3. Electrochemistry

To evaluate the electronic properties of the different cycloadducts, their cyclic voltam-
mograms (CVs) were recorded as along with the CV of the TPE-alkyne precursor for
comparison (see Figure 7). This latter only showed one irreversible oxidation wave at
around 0.80 V vs. SCE (peak potential), which could be attributed to the oxidation of
the four anilines. One can notice that the four oxidations occurred at the same potential,
probably because of the low conjugation between anilines due to the twisted geometry
around the central TPE core. This irreversible oxidation was also observed in the case of
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cycloadducts, but it was shifted to higher potentials (peak potentials at 1.31 V vs. SCE for
TPE-TCNE, 0.88 V vs. SCE for TPE-TCNQ and 0.97 V vs. SCE for TPE-F4-TCNQ). This may
be attributed to the presence of the strong electron acceptors conjugated to the anilines,
rendering their oxidations more difficult. By contrast with the TPE-alkyne precursor, two
reversible reduction waves were also observed. The reduction potentials strongly depend
on the nature of the electron-accepting groups. In the case of TPE-TCNE, the two reductions
occurred at −0.45 and −0.88 V vs. SCE (these potentials were calculated as the half-sum
of the anodic and cathodic potential peaks, see the note in Table 2), which are in line with
previously reported values for this kind of tetracyanobutadiene (TCBD) [52]. TPE-TCNQ
was easier to reduce with reductions at −0.23 and −0.46 V vs. SCE due to a higher delo-
calization of the newly formed negative charges thanks to the dicyanoquinodimethane
moiety. The reduction potentials were even higher in the case of TPE-F4-TCNQ: +0.09 and
−0.21 V vs. SCE due to the significant strengthening of the electron-accepting ability of
the dicyanoquinodimethane moiety due to the presence of the fluorine atoms [54]. This
particularly high first reduction potential may explain the “spontaneous” reduction of the
system that generates the above-mentioned ESR signal in solution and in the solid state.
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TCNQ (D) in CH2Cl2 + Bu4NPF6 solutions. Scan rate: 100 mV.s−1, Pt disk working electrode.
Potentials are given vs. SCE.

Table 2. Electrochemical data extracted from cyclic voltammetry in dichloromethane with 0.2 M of
NBu4PF6 as electrolyte (potentials versus saturate calomel electrode).

TPE-Alcyne TPE-TCNE TPE-TCNQ TPE-F4-TCNQ

E1/2 (V) a - −0.45 −0.23 +0.09
−0.88 −0.46 −0.21

Ep
b +0.80 +1.31 +0.88 +0.97

a E1/2 = (Epc + Epa)/2, in which Epc and Epa correspond to the cathodic and anodic peak, respectively (this
potential is calculated when the electron transfer is reversible) b Ep = potential peak (irreversible wave).



Int. J. Mol. Sci. 2023, 24, 8715 9 of 22

2.4. Electronic Structure Calculations

To gain more insights into the photophysical and electrochemical measurements on
the four TPE derivatives, theoretical calculations based on (Time-Dependent) Density
Functional Theory (TD)-DFT were performed [90–94]. All calculations were carried out
using the long-range hybrid CAM-B3LYP functional [95] and a 6-311G (d,p) basis set, as
motivated by the fact that the DFT functionals with long-range corrections better describe
excited states with a pronounced charge transfer character [96].

The shape of the frontier orbitals in the optimized structures obtained from the DFT
calculations are displayed in Figure 8 (see also Figure S44). For TPE-alkyne, the HOMO
is delocalized evenly on the entire molecule while the LUMO is denser on the TPE core.
In TPE-TCNE, the HOMO is localized on the extremity of one TCBD arm following the
introduction of an electron-accepting group in its center, thus breaking apart the large
delocalization observed for the pristine compound. Similarly, the HOMO-1 to HOMO-3
levels get localized over the other branches (Figure S46). The LUMO spreads along a
diagonal involving both the TPE core and the inner part of two TCBD arms. A similar
pattern prevails for the LUMO + 1, while the LUMO + 2 and LUMO + 3 are delocalized over
the other diagonal (Figure S46). In the case of TPE-TCNQ and TPE-F4-TCNQ, the frontier
orbital spatial distribution is quite similar, with the HOMO and LUMO levels localized
over the terminal donor part and inner acceptor part, respectively, of a single arm. The
deeper occupied and higher unoccupied levels are localized over the other branches. Here,
the TPE core is thus weakly involved in the frontier orbital distribution. Excited states
with a pronounced intra- and/or interbranch character are thus expected at low energy.
Since the molecular orbitals are not uniformly distributed over all branches, these frontier
molecular orbitals are quasi-degenerate, particularly the HOMOs (see Figures S45 and S46).
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The relative energy level alignment of the frontier orbitals of the TPE adducts was
estimated from the DFT calculations and are displayed in Figure 9 when accounting for
the solvent effects (i.e., THF used for the optical absorption spectra) via the Polarizable
Continuum Model (PCM). As measured in cyclic voltammetry, the calculated HOMO–
LUMO gaps decrease when increasing the electron-withdrawing character of the adducts
in the following order: F4-TCNQ > TCNQ > TCNE. It is worth remembering that the
absolute values of the gap cannot be directly compared to the CV data since the calculations
rely on Koopmans’ approximation (associating the ionization potential to the HOMO
of the neutral molecule and the electron affinity to the LUMO energy). Moreover, the
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amplitude of the HOMO–LUMO gap critically depends on the choice of the DFT functional.
Nevertheless, comparing the evolution of the HOMO and LUMO energies on a relative
basis is meaningful. Doing so, we observe that the shift between the frontier energy levels
of the various TPE adducts nicely matches the experimental trends (see Figure 9).
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2.5. Excited-State Calculations

The absorption spectra of the TPE compounds simulated at the TD-DFT level using
the same functional and base set are shown in Figure 10 (see also Figure S47). The Gaussian
broadening used to generate the UV–Visible absorption spectra is set to σ= 0.25 eV to
match the width of the experimental bands. The computed electronic transitions, as
well as their corresponding oscillator strength and assignment, are listed in Table S1,
Supplementary Materials.
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For TPE-alkyne, the lowest excitation occurs at 367 nm, which is in very good agree-
ment with the strong absorption band experimentally observed in its UV−Visible absorp-
tion spectrum (λmax = 359 nm, Table 1, Figure 3). This corresponds to a transition from the
HOMO to the LUMO level (see Table S1, Supplementary Materials). Conversely, the absorp-
tion spectra of the TPE adducts exhibit an additional absorption band with a CT character in
the visible–near infrared region. For TPE-TCNE, TPE-TCNQ and TPE-F4-TCNQ, the lowest
excitation occurs at 443 nm, 625 nm and 675 nm, respectively. To further analyze the nature
of these excitations, we performed an NTO analysis that describes globally for each given
excitation where the electron is excited from and where it is promoted during the excitation,
i.e., as a single-particle transition from an effective occupied to virtual orbital [97]. We
refer to the occupied and virtual NTOs as “hole” and “electron” transition orbitals, respec-
tively. Note that the NTOs are not the same as the occupied and virtual molecular orbitals
calculated in the ground state. Moreover, we have also calculated the spatial overlap ϕs
between the electron and hole density in order to quantitatively evaluate the charge-transfer
character of an electronic transition; ϕs = 1 for a purely localized character and ϕs = 0 for
a pure charge transfer excitation [98,99]. In the case of TPE-TCNE, the lowest excitation
at 443 nm is predominantly assigned to a transition from a hole orbital localized on the
extremity of a TCBD arm to an electron orbital localized on the inner part of the same TCBD
arm and including a part of the TPE core. This graphical picture of NTOs is consistent with
the moderate spatial overlap ϕs value of 0.47 calculated for this transition (see Figure 11).
Moving to TPE-TCNQ and TPE-F4-TCNQ, the dominant transition contributing to the
lowest excitation at 625 nm and 675 nm, exhibits both a weaker charge-transfer character
compared to TPE-TCNE due to the strong spatial overlap between the hole and electron
NTO orbitals as evidenced by a larger ϕs index (0.70 and 0.72, respectively) (see Figure 11).
For all TPE adducts, the high oscillator strength associated with the lowest excitation is
attributed to this strong intra-branch character. Interestingly, the simulated absorption
spectra nicely reproduce the experimental bathochromic shift of the CT absorption band.
Going from TPE-TCNE, TPE-TCNQ to TPE-F4-TCNQ, a systematic red shift in the CT
absorption band as well as an increase in its intensity are noticed, which is fully in line with
the increase in the electron-withdrawing strength of the TPE adducts and the decrease in
the CT character, respectively. This red shift can be evaluated by computing the energy
difference between the main peaks of the lowest charge transfer band of the TPE conducts.
Thus, moving from TPE-TCNE (Emax = 3.11 eV) to TPE-TCNQ (Emax = 2.27 eV), a red shift
of 0.84 eV is computed whereas a red shift of 0.34 eV is obtained going from TPE-TCNQ
(Emax = 2.27 eV) to TPE-F4-TCNQ (Emax = 1.93 eV) (see Figure S46). These results are in
excellent agreement with experiments showing the same red shifts of 0.84 eV and 0.34 eV,
respectively (see Table 1).

2.6. Photothermal Properties and Thermal Stability

Due to their high absorption in the red-NIR region, TPE-TCNQ and TPE-F4-TCNQ
appear as suitable photothermal agents, relaxing to their ground state non-radiatively by the
creation of phonons (vibrations) and thus affording an increase in the temperature [100]. To
investigate the photothermal behavior of TPE-TCNQ and TPE-F4-TCNQ, the temperature
changes of thin films and powders under a laser beam were measured. Figure S23 shows
absorption spectra for TPE-TCNE, TPE-TCNQ and TPE-F4-TCNQ thin films. A wavelength
of 808 nm was selected for this study for two reasons: (i) this wavelength is in the first
biological transparency window (NIR-I, 750–1000 nm), (ii) this wavelength is located
in a good absorbing region of the UV–Visible absorption spectra of both molecules. In
similar conditions, TPE-F4-TCNQ shows a stronger photothermal conversion compared
to TPE-TCNQ (Figure 12). Figure 13 displays photothermal conversion cycles for TPE-F4-
TCNQ at different laser powers. The thermal cycles are reproducible, indicating that the
molecules do not degrade under irradiation (see Figure S40). The first cycle was fitted
using the COMSOL software to extract the surface heat power produced by the beam light
irradiation. In the case of thin films and at the maximum power of the laser (2.58 W/cm2),
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the temperature rose to a maximum of 50 ◦C in less than one minute. If the thin film is
replaced by a dense powder of TPE-F4-TCNQ, the temperature rises at almost 100 ◦C in less
than one minute (Figure 13). This difference is explained by an increase in the amount of
matter of the sample leading to an increase in light absorption in the case of the irradiation
of the powder. Finally, to check the thermal stability of TPE-TCNQ and TPE-F4-TCNQ,
a thermogravimetric analysis (TGA) under nitrogen flow was performed indicating no
weight loss greater than 2% up to 320 ◦C (see Figure S36).
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2.7. Concluding Remarks

Generally speaking, it is interesting to note that almost all the CA-RE derivatives
described in the literature to date have spectral characteristics extremely close to those
described in this paper when the electron donating group is a dialkyl or a diphenyl
aniline [54,57,59,62,69–74,76,83–86,101–117]. In all cases, the ICT bands are found in the
same regions within a few nm. The CT band A is between 450 and 470 nm and the CT
band B between 680 and 710 nm for TCNQ and between 830 and 860 nm for F4-TCNQ.
This indicates that whatever the starting alkyne, the charge transfers will only involve
the cyanated parts and the aniline. This supposition is well supported by the TD-DFT
calculations that showed that the central core played a very negligible role in the frontier
orbitals and thus in the electronic properties. The observed behavior is exclusively governed
by the clicked moieties.

3. Methods and Materials
3.1. Materials

Dry tetrahydrofuran (THF), dichloromethane (DCM) and diethyl ether (Et2O) were
obtained by using a solvent purification system Puresolve MD5 from Inert. Anhydrous
N,N-dimethylformamide (DMF) (Acros, 99.8%), dichlorobenzene (TCI, 99%), anhydrous
acetonitrile (Alfa Aesar, 99.8%) and absolute ethanol (VWR) were used as received. Triph-
enylphosphine (Fluorochem, 99%), n-tetrabutylammonium fluoride (Sigma-Aldrich, 1M in
THF), 1,1,2,2-tetraphenylethene (TPE) (Fluorochem, 95%), bromine (Sigma-Aldrich, 99%),
copper iodide (Alfa Aesar, 99.998%), 4-ethynyl-N,N-dimethylaniline (Aldrich, 97%), diiso-
propylamine (Aldrich, 99.5%), 4-iodoaniline (Alfa Aesar, 98%), 1-bromododecane (ABCR,
99%), trimethylsilylacetylene (Fluorochem, 99%), 4,4′-dibromobenzophenone (Fluorochem,
98%), titanium (IV) chloride (Merck, 97%), zinc dust (Aldrich, 98%), pyridine (Aldrich,
99.8%), tetracyanoethylene (TCNE) (Aldrich, 96%), 7,7,8,8-Tetracyanoquinodimethane
(TCNQ) (Alfa Aesar, 98%), 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ)
(Fluorochem, 95%) were used as received. Tetrakis(triphenylphosphine)-palladium (0)
[Pd(PPh3)4], was prepared according to literature procedures [113]. Ph-I-N-C12, Ph-SiMe3-
N-C12 and Ph-alkyne were synthesized according to procedures described in the litera-
ture [114]. Reactions were monitored by thin-layer chromatography (TLC) using Merck©
TLC Silica gel 60 F254 plates. Flash chromatography was carried out using a Biotage®

Isolera™ System (UV-Vis 200 nm–800 nm detector) over silica cartridges (SNAP Ultra or
Sfär HC D).
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3.2. Characterization Methods

Unless otherwise stated, measurements were done on the equipment available at the
Plateforme d’Analyse et Caractérisation (PAC) of the Balard Institute, CNRS, University of
Montpellier, France.

IR spectra were carried out on a Perkin Elmer Spectrum 2 FT-IR instrument using the
attenuated total reflectance (ATR) measurement mode (diamond crystal). The wavenumber
range analyzed was 500–4000 cm−1 and the optical resolution of the instrument was 4 cm−1.

1H NMR spectra were recorded at 273 K or 298 K on a Bruker Avance III 400 MHz NMR
spectrometer using a BBFO probe or a Bruker Avance III 500 MHz NMR spectrometer using
a Prodigy BBO Z-gradient CryoProbe or a Bruker Avance III 600 MHz NMR spectrometer
using a Prodigy TCI Z-gradient CryoProbe and calibrated to TMS on the basis of the relative
chemical shift of the residual non-deuterated solvent as an internal standard (CD2Cl2:
δ = 5.32 ppm, CDCl3: δ = 7.26 ppm, DMSO-d6: δ = 2.50 ppm, THF-d8: δ = 3.58 ppm).
13C{1H} NMR spectra were recorded at 298 K on a Bruker Avance III 500 MHz NMR
spectrometer using a Prodigy BBO Z-gradient CryoProbe or a Bruker Avance III 600 MHz
NMR spectrometer using a Prodigy TCI Z-gradient CryoProbe and calibrated to TMS on
the basis of the relative chemical shift of the residual non-deuterated solvent as an internal
standard (CD2Cl2: δ = 53.84 ppm, CDCl3: δ = 77.16 ppm, DMSO-d6: δ = 39.52 ppm, THF-d8:
δ = 67.21 ppm). 19F NMR spectra were recorded at 298 K on a Bruker Avance III 400 MHz
NMR spectrometer using a BBFO probe.

The MS (MALDI) spectra were recorded on a Rapiflex (Bruker) with Matrix-Assisted
Laser Desorption Ionization (MALDI) source and a TOF analyzer. The mass spectra were
recorded in positive mode between 500 and 15,000 Da in reflector mode for TPE-adduct.
Samples were incorporated in a DCTB matrix. Mass accuracy measurement were done at
UMONS, Organic Synthesis and Mass Spectrometry Laboratory (S2MOs, Mons, Belgium),
by using a Waters QToF Premier mass spectrometer equipped with Matrix-Assisted Laser
Desorption/Ionization source. A Nd-YAG laser of 355 nm with a maximum pulse energy of
65 µJ delivered to the sample at 50 Hz repeating rate is used. Time-of-flight mass analyses
were performed in the reflection mode at a resolution of about 10 k (m/z 569). Trans-2-(3-(4-
tert-butyl-phenyl)-2-methyl-2-propenylidene)malononitrile (DCTB) was used as the matrix
and was prepared as a 40 mg/mL solution in chloroform. The matrix solution (1 µL) was
applied to a stainless-steel target and air-dried. Samples were dissolved in chloroform to
obtain 1 mg/mL solutions. 1 µL aliquots of these solutions were applied onto the target
area (already bearing the matrix crystals) and air-dried. Exact mass was determined by
using poly(ethylene glycol) as internal reference.

The UV-Visible absorption spectra were recorded on a JASCO V-650 spectrophotometer
in 10 mm quartz cells (Hellma). The molar extinction coefficients (ε) were determined by the
plot of absorbance vs. concentration by preparing solutions at different concentrations in
THF. The concentration range was chosen to remain in the linear range of the Beer–Lambert
relationship (A ca. 0.2–0.8).

The optical gap (Eg) was determined by the Tauc method [115]. The onset wavelength
of the absorption spectra was determined by the intersection of the straight line fitted to
the right-hand side of the maximum with the baseline of the absorption.

Thin film were realized by deposition of ca. 10−5 mol.l−1 THF solutions on a quartz
plate followed by the evaporation of the solvent. The operation was repeated until an
absorbance of ca. 0.25 was measured at the maximum of the Intramolecular Charge Transfer
(ICT) band.

The emission spectra in powder and in solution for TPE-TCNE, TPE-TCNQ and TPE-
F4-TCNQ adducts were recorded in the Laboratoire de Chimie de l’ENS Lyon recorded
on a fluorescence spectrofluorimeter (Fluorolog-3, Horiba-Jobin Yvon) equipped with
R2658 photomultiplier tube (Hamamatsu, water cooling) or Synapse InGaAs/Symphony
II (Horiba, nitrogen cooling) as detectors. The steady-state luminescence was excited by
non-polarized light from a 450 W xenon CW lamp.
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The measurement of quantum yields were carried out with an FLS980 integrating
sphere (Edinburgh Instruments) connected to a FS920 fluorescence spectrophotometer
(Edinburgh Instruments), equipped with a calibrated photomultiplier in a Peltier (air
cooled) housing (R928P, Hamamatsu) operating up to 900 nm, with a 450 W continuous
xenon arc lamp as the excitation source.

Measurements were performed in the Institut des Sciences Chimiques de Rennes –
France (ISCR). For TPE-adducts, CVs were carried out on a 10−3 mol.L−1 solution of sample
in CH2Cl2/[NBu4][PF6] 0.1 mol.l−1. CVs were recorded on a Biologic SP-50 instrument
at 0.1 V s−1 on a platinum\u0002 disk electrode. Potentials were measured versus a KCl
saturated calomel electrode (SCE).

ESR spectra were recorded on a Bruker Elexsys E500 CW continuous wave, X band
(9.8 GHz) spectrometer equipped with ER4122 SHQ cavity at room temperature. Sample
was diluted in THF and introduced in a quartz tube. The window was 10 mT (100 G)
centered around g = 2 with 2 G of amplitude modulation, 100 kHz of frequency modulation,
10 dB of micro-wave power and 70 dB of gain.

Thermogravimetric analyses (TGA) were carried out on a STA 449 F1 Jupiter Netzsch
analyzer under dry nitrogen at a heating rate of 10 ◦C.min−1.

Photothermal measurements were realized on samples of TPE-TCNE and TPE-F4-
TCNQ. Two different deposits were realized with both samples. First bulk materials
(powders) were placed on a quartz surface. Secondly, thin films of both samples were
deposited on quartz slide from diluted THF solutions (ca. 1.10−4 mol.L−1). Then, we
used a 808 nm laser (Kamax society, Limoges, France) with an adjustable power from 0
to 2.58 W/cm2. The laser spot surface was 0.32 cm2. The temperature of the surface was
measured using an OPTRIS PI 450 thermal camera (Media Mesures, Bouc Bel Air, France).
The samples were deposited on a polystyrene surface in contact with air to limit heat
transfer with the support.

Photothermal simulations were realized using the COMSOL software [116]. The heat
equation was solved simultaneously with the simplified Navier–Stokes equation to take
into account the heat propagation and the convection terms present for the air. The model
consisted of a quartz substrate, with a surface heat source to simulate the heat produced
by the laser absorption of the TPE-TCNQ or TPE-F4-TCNQ sample layer, deposited on a
polystyrene support.

3.3. Calculations Details

The ground-state geometry of the molecules has been first optimized without any sym-
metry constraint in the gas phase and the electronic properties of the optimized structures
have been next determined in gas phase, in THF and in DCM used in the CV measurements.
The vibrational frequencies associated to the optimized structures were also calculated to
verify that they correspond to local minima on the energy surface. The absorption spectra
and the vertical electronic transitions have been next computed at the TD-DFT level and
compared to the corresponding experimental data. All calculations have been carried out
using the long-range hybrid Cam-B3LYP functional [117] and a 6-311G (d,p) basis set within
Revision D.01 of the Gaussian 09 program package [5]. The solvent effects in THF, used for
the spectroscopic measurements, were simulated by means of the polarizable continuum
model (PCM) [118].

3.4. Synthesis

Bz-alkyne. 4,4′-dibromobenzophenone (0.90 g, 2.66 mmol) was introduced into a
100 mL two neck round-bottom flask under argon atmosphere with 30 mL of anhydrous
THF. Copper (I) iodide (20 mg, 0.11 mmol, 4 mol%), bis(triphenylphosphine)palladium
(II) chloride (77 mg, 0.11 mmol, 4 mol%) and triphenylphosphine (13 mg, 0.05 mmol,
2 mol%) were then added (solution 1). In parallel, Ph-alkyne (2.90 g, 6.38 mmol, 2.4 eq) was
introduced into a Schlenk tube under argon atmosphere with 10 mL of anhydrous THF
and 20 mL of diisopropylamine (solution 2). Once prepared, solution 2 was transferred
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into solution 1 through cannula. The mixture was then heated to 65 ◦C overnight. Once
judged complete, the solvent was removed under reduced pressure. The crude mixture
was first filtrated on a silica gel column chromatography with cyclohexane before being
purified by column chromatography on silica gel using gradient elution (100% cyclohexane
to 70% cyclohexane / 30% dichloromethane). The fraction corresponding to the product
was concentrated and then, diluted with a mixture of dichloromethane (5 mL) and acetone
(50 mL). The solution was cooled. The resulting precipitate was filtered leading to Bz-
alkyne as a yellow-orange powder. Yield 73% (2.10 g, 1.93 mmol). FTIR-ATR (cm−1): 2202
(νC≡C), 1651 (νC=O). 1H NMR (500 MHz, CD2Cl2, δ): 7.75 (d, 4H, 3JH-H = 8.5 Hz), 7.58 (d,
4H, 3JH-H = 8.5 Hz), 7.37 (d, 4H, 3JH-H = 9.0 Hz), 6.60 (d, 4H, 3JH-H = 9.0 Hz), 3.29 (t, 8H,
3JH-H = 7.7 Hz), 1.63–1.55 (m, 8H), 1.37–1.21 (m, 72H), 0.88 (t, 12H, 3JH-H = 7.0 Hz) ppm.
13C{1H} NMR (126 MHz, CD2Cl2, δ): 195.3, 148.9, 136.3, 133.5, 131.2, 130.5, 129.2, 111.6,
108.0, 95.2, 87.2, 51.4, 32.5, 30.2, 30.2, 30.1, 30.0, 29.9, 27.6, 27.6, 23.2, 14.4 ppm. HRMS (Maldi,
DCTB): m/z [M]•+ calc for [C77H116N2O]•+: 1084.9088; found: 1084.9081 (δ = 0.6 ppm).

TPE-alkyne. Bz-alkyne (600 mg, 0.55 mmol) and zinc dust (111 mg, 1.70 mmol, 3 eq)
were dissolved in anhydrous THF (30 mL) into a 100 mL three neck round bottom flask
under argon atmosphere. Titanium (IV) chloride (120 µL, 1.11 mmol, 2 eq) was added drop-
wise at−78 ◦C. After return at room temperature, pyridine (20 µL, 0.44 mmol, 0.4 eq/TiCl4)
was added and the solution was stirred during 30 min at room temperature. The mixture
was then heated at 65 ◦C overnight. The progress of the reaction was followed by TLC
using n-hexane 96%/4% dichloromethane as eluent. When judged complete, the mixture
was cooled at room temperature and then, quenched with of a 10% aqueous solution
of K2CO3 (60 mL). The aqueous layer was extracted with dichloromethane (5 × 50 mL).
The organic layer was then dried over anhydrous MgSO4 and the solvent was removed
under reduced pressure. The crude product was purified by column chromatography on
silica gel using isocratic elution (90% n-hexane/9% dichloromethane/1% triethylamine).
The product was isolated as an orange oil. Yield: 312 mg (0.15 mmol, 53%). FTIR-ATR
(cm−1): 2208 (νC≡C). 1H NMR (500 MHz, CDCl3, δ): 7.33 (d, 8H, 3JH-H = 8.4 Hz), 7.25 (d,
8H, 3JH-H = 8.4 Hz), 6.98 (d, 8H, 3JH-H = 7.8 Hz), 6.55 (d, 8H, 3JH-H = 7.8 Hz), 3.25 (t, 16H,
3JH-H = 7.4 Hz), 1.62–1.54 (m, 16H), 1.36-1.22 (m, 160H), 1.36–1.22 (t, 24H, 3JH-H = 7.0 Hz)
ppm. 13C{1H} NMR (126 MHz, CDCl3, δ): 148.0, 142.6, 140.8, 133.0, 131.6, 130.9, 122.7, 111.3,
108.9, 91.6, 87.3, 51.1, 32,1, 29.8, 29.8, 29.7, 29.5, 27.4, 27.3, 22.9, 14.3 ppm. HRMS (Maldi,
DCTB) m/z: [M]•+ calc for [C154H232N4]•+: 2137.8277; found: 2137.8262 (δ = −0.7 ppm).
UV-Vis (THF): λ (ε, L.mol−1.cm−1) = 359 (143 400), 294 (82 400) nm.

TPE-TCNE. TPE-alkyne (74 mg, 35.0 µmol) was introduced into a Schlenk tube under
argon atmosphere. 10 mL of anhydrous dichloromethane as well as tetracyanoethylene
(TCNE, 27 mg, 0.21 mmol, 6 eq) were added. The solution was stirred at room temperature
during 1 h. The progress of the reaction was followed by TLC using n-hexane/CH2Cl2
(90/10 v/v) as eluent. When judged complete, the solvent was removed under vacuum. The
product was then purified by column chromatography on silica gel using a gradient elution
(90% n-hexane/10% dichloromethane to 80% n-hexane/20% dichloromethane). TPE-TCNE
was isolated as a dark red film-forming solid. Yield: 65 mg (24 µmol, 70%). FTIR-ATR
(cm−1): 2213 (νC≡N). 1H NMR (500 MHz, CDCl3, δ): 7.76 (d, 8H, 3JH-H = 9.0 Hz), 7.54
(d, 8H, 3JH-H = 8.5 Hz), 7.14 (d, 8H, 3JH-H = 8.5 Hz), 6.70 (d, 8H, 3JH-H = 9.0 Hz), 3.40
(t, 16H, 3JH-H = 7.6 Hz), 1.64 (q, 16H, 3JH-H = 6.2 Hz), 1.38–1.22 (m, 144H), 0.88 (t, 24H,
3JH-H = 6.8 Hz). 13C{1H} NMR (126 MHz, CDCl3, δ): 168.8, 162.0, 153.5, 146.6, 142.8, 133.1,
132.3, 132.0, 129.9, 117.6, 114.9, 114.1, 112.6, 112.2, 111.3, 87.7, 51.7, 32.1, 29.8, 29.7, 29.6,
29.5, 27.5, 27.2, 22.8, 14.3 ppm. HRMS (Maldi, DCTB) m/z: [M]•+ calc for [C178H232N20]•+:
2649,8769; found: 2649.8757 (δ = −0.5 ppm). UV-Vis (THF): λ (ε, L.mol−1.cm−1) = 469 (113
400), 307 (45 600) nm. Mp: 124–127 ◦C.

TPE-TCNQ. TPE-alkyne (100 mg, 47.0 µmol, 1 eq) was introduced into a Schlenk tube
under argon atmosphere with dichlorobenzene (10 mL). 7,7,8,8-tetracyano-p-quinodimethane
(TCNQ, 57.6 mg, 0.28 mmol, 6 eq) was added. The solution was stirred at 100◦C during
1 h. The progress of the reaction was followed by TLC using n-hexane/CH2Cl2 (90/10 v/v)
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as eluent. The solvent was removed under vacuum. The residue was purified by column
chromatography on silica gel with a gradient elution (90% n-hexane/10% dichloromethane
to 80% n-hexane/20% dichloromethane). TPE-TCNQ was isolated as a dark film-forming
solid. Yield: 66 mg (22.0 µmol, 47%). FTIR-ATR (cm−1): 2201 (νC≡N). 1H NMR (600
MHz, 273K, CD2Cl2, δ): 7.46 (d, 4H, 3JH-H = 8.0 Hz), 7.43 (d, 8H, 3JH-H = 8.6 Hz), 7.28 (d,
8H, 3JH-H = 9.1 Hz), 7.20 (d, 4H, 3JH-H = 8.1 Hz), 7.04 (d, 12H, 3JH-H = 8.6 Hz), 6.93–6.81
(m, 4H), 6.71 (d, 8H, 3JH-H = 9.1 Hz), 3.38 (t, 16H, 3JH-H = 7.7 Hz,), 1.65–1.60 (m, 16H),
1.38–1.18 (m, 144H), 0.88 (t, 24H, 3JH-H = 6.9 Hz) ppm. 13C{1H} NMR (151 MHz, 273K,
CD2Cl2, δ): 172.5, 154.1, 152.2, 152.1, 146.3, 142.7, 136.4, 135.7, 135.1, 132.3, 131.0, 129.8,
124.7, 124.0, 115.9, 115.8, 113.6, 112.9, 112.5, 88.8, 51.7, 32.3, 30.0, 30.0, 30.0, 29.8, 27.6, 27.2,
23.1, 14.4 ppm. HRMS (Maldi, DCTB) m/z: [M]•+ calc for [C202H248N20]•+: 2954.0021;
found: 2953.9946 (δ = −2.5 ppm). UV-Vis (THF) λ (ε, L.mol−1.cm−1) = 688 (155 000), 468
(78 500), 337 (113 900) nm. Mp: 115–119 ◦C.

TPE-F4-TCNQ. TPE-alkyne (100 mg, 47.0 µmol) was introduced into a Schlenk tube under ar-
gon atmosphere with dichlorobenzene (10 mL). 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane
(F4-TCNQ, 77.9 mg, 0.28 mmol, 6 eq) was added. The solution was stirred at 100 ◦C dur-
ing 1 h. The progress of the reaction was followed by TLC using 20% n-hexane/80%
dichloromethane as eluent. The solvent was removed under vacuum. The product was pu-
rified by column chromatography on silica gel with a gradient elution (20% n-hexane/80%
dichloromethane to 100% dichloromethane). TPE-F4TCNQ was isolated as a dark film-
forming solid. Yield: 55 mg (22.0 µmol, 36%). FTIR-ATR (cm−1): 2196 (νC≡N). 1H NMR
(400 MHz, CDCl3, δ): 7.51–7.29 (m, 16H), 7.15–6.99 (m, 8H), 6.90 (d, 8H, 3JH-H = 8.1 Hz),
3.74–3.50 (m, 16H), 1.83–1.70 (m, 16H), 1,35–1.19 (m, 144H), 0.88 (t, 24H, 3JH-H = 6.8 Hz)
ppm. 13C{1H} NMR (126 MHz, CDCl3, δ): 172.0, 156.5, 146.6, 146.1, 145.6, 143.5, 142.8,
140.5, 138.8, 138.5, 134.4, 133.7, 132.0, 130.1, 117.5, 116.3, 113.3, 113.1, 112.1, 107.3, 89.4,
53.5, 53,4, 32.0, 29.8, 29.7, 29.7, 29.6, 29.4, 28.5, 27.1, 22.8, 14.3 ppm. 19F NMR (376 MHz,
CDCl3, δ): −134.1, −134.4, −143.1, 143.4 ppm. HRMS (Maldi, DCTB) m/z: [M]•+ calc
for [C202H232F16N20] •+: 3241.8513; found: 3241.8586 (δ = 2.3 ppm). UV-Vis (THF) λ (ε,
L.mol−1.cm−1) = 849 (163 400), 497 (73 600), 348 (97 500) nm. Mp: 160–164 ◦C.

4. Conclusions

In conclusion, we have successfully applied the [2 + 2] CA-RE click reactions to a TPE
platform adequately functionalized with electron-rich alkynes to obtain three cycloadducts,
namely TPE-TCNE, TPE-TCNQ and TPE-F4-TCNQ. All these cycloadducts were fully
characterized by NMR spectroscopy and HR-MS spectrometry. As confirmed by ESR
spectroscopy, TPE-F4-TCNQ showed a substantial paramagnetic behavior in the solid
state. As reported elsewhere, all compounds exhibited strong absorption bands in the NIR
region of their UV–Visible absorption spectra, whose positions depend on the electron-
withdrawing character of the clicked moieties. The origin of these bands was attributed
by TD-DFT calculations to intramolecular charge transfers within the clicked moieties,
indicating that the TPE core played a negligible role in the frontier orbitals and thus in the
electronic properties. As a result, the TPE-alkyne precursor was rather luminescent, with a
QY of 21%, and displayed a marked AIE behavior, whereas, among the clicked compounds,
only TPE-TCNE showed a very faint fluorescence accompanied by an AIE behavior. Because
they are non-luminescent and their CT band is in the NIR domain, TPE-TCNQ and TPE-F4-
TCNQ were found to be suitable candidates for photothermal studies. Upon irradiation
with a laser beam at 808 nm, both compounds exhibited excellent photothermal properties;
the best results being obtained with powders of TPE-F4-TCNQ. In this case, a temperature
of 100 ◦C was reached within less than one minute without decomposition under a laser
power of 2.58 W/cm2. The present study shows that CA-RE click reactions provide
an excellent strategy for conferring high performance photothermal properties to any
molecular platform with appropriate functionalities and adequate thermal stability. This
result is very interesting393 nce it suggests that every already published or future CA-RE
derivatives of TCNQ or F4-TCNQ could be good candidates for photothermal applications.
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